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Abstract  

In this paper a new two-level four moduli set {2
2n

 {2
n
, 2

n+1
–1}, 2

n
 –1, 2

n
 +1} is introduced and an efficient residue to binary 

converter is proposed for it. This moduli set contains the moduli set {2
2n

, 2
n
 –1, 2

n
 +1} in its first-level and the moduli set {2

n
, 

2
n+1

 –1} in its second-level for the modulo 2
2n

.The reverse converter for this moduli set is implemented in two-level structure, 

which is designed based on Chinese remainder theorem (CRT) and the new CRT-1 methods. The proposed residue to binary 

converter for this moduli set improves the hardware cost and delay significantly in comparison to the similar previously 

presented moduli sets. 

 

Keywords: Reverse converter, residue arithmetic, VLSI architecture. 
 

Introduction 

The residue number system (RNS) is a carry-free number 

system, which can be used as a method for high-speed and low-

power implementation of digital signal processing (DSP) 

computation algorithms
1
. The residue to binary conversion is 

very important and complex part of an RNS system. The 

complexity of the residue to binary converter is mainly based on 

moduli set. Up to now, many moduli sets have been presented 

with various dynamic ranges (DR) such as {2
n+1

 –1, 2
n
, 2

n
 –1}

2
, 

{2
2n

, 2
n
 –1, 2

n+1
 –1}

3
 and {2

n
, 2

2n
 –1, 2

2n 
+1}

4
, which have 

dynamic ranges equal to 3n, 4n and 5n-bits respectively. Some 

applications require large dynamic ranges with high parallelism. 

Therefore, four-moduli sets {2
n
 –1, 2

n
, 2

n
 +1, 2

n+1
 –1}

5
 and {2

n
 –

3, 2
n
 –1, 2

n
+1, 2

n
+3}

6 
have been presented. Since moduli set {2

n
 

–1, 2
n
, 2

n
 +1, 2

n+1
 –1} has appropriate moduli, it has a more 

efficient RNS arithmetic unit compared to moduli set {2
n
 –3, 2

n
 

–1, 2
n
+1, 2

n
+3}.  

 

Hosseinzadeh et al have decreased the delay of reverse 

converter for moduli set {2
n
 –1, 2

n
, 2

n
 +1, 2

n+1
 –1}

7
. However, a 

little more hardware has been applied. 

 

In this paper, an improved residue to binary converter is 

proposed for moduli set {2
n
 –1, 2

n
, 2

n
 +1, 2

n+1
 –1} by converting 

it into a two-level moduli set in the form of {2
2n

 {2
n
, 2

n+1
 –1}, 2

n
 

–1, 2
n
 +1} such that its residue to binary converter has lower 

delay and hardware cost in comparison to the proposed 

converters for {2
n
 –1, 2

n
, 2

n
 +1, 2

n+1
 –1}

5
 and {2

n
 –1, 2

n
, 2

n
 +1, 

2
n+1

 –1}
7
  . 

 

 

Material and Methods 

The RNS
1
 is based on a moduli set {m1, m2,…, mn} which 

consists of pairwise relatively prime numbers. The dynamic 

range is defined as M = m1m2…mn. Each weighted number X < 

M has a unique representation in RNS as (x1, x2,…, xn) where: 

Xxi =  mod im  = 
im

X   , ii mx <≤0                        (1) 

By using CRT, the RNS number (x1, x2,…, xn) can be converted 

into its equivalent weighted number as 

M

n

i
miii

i

xkmX ∑
=

×=
1

ˆ                                                 (2) 

Where: ∏
=

=
n

i

imM
1

,

i

i
m

M
m =ˆ  , 

1ˆ −= ii mk  ,  1ˆ =×
imii mk   

and  
imi Xx = . 

By using CRT-1, the reverse conversion can be done as 

                   

2 3
1 1 1 2 1 2 2 3 2 1 2 3 1 1( ) ( ) ( )

n
n n n n m m m

X x m k x x k m x x k mm m x x− − −= + − + − + + −
L

L L  (3) 

Where: 1
32

11 =×
nmmm

mk
L

,  

1,,1 1211212
3

=××××=×× −−
nn mnnmm

mmmkmmk LK
L

. 

 

In two-level RNS for each desired modulo at the first-level a 

moduli set at the second-level must be chosen in such a way that 

its dynamic range be equal or greater than the desired modulo at 

the first-level. In two-level RNS, arithmetic operations are 

performed on the residues of second-level moduli. Afterward, 
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for converting from RNS to binary system, the residues of the 

second-level are converted to corresponding residues at the first-

level. Then, recently obtained residues are converted to binary 

system. 

 

Residue to binary converter for the two-level moduli set {2
2n

 

{2
n
, 2

n+1
–1}, 2

n
 –1, 2

n
 +1}: the CRT-1 for these two moduli 

requires only one multiplicative inverse as 

212
12 1

=→=×
−+

kk
n

n
                  (4) 

The T =(x11, x12) can be obtained by substituting the value of k, 

and moduli m11 = 2
n
, m12 = 2

n+1
 in (3) as shown below 

12121111

12111211

1

1

222

)(22

−

−

+

+

+−+=

−+=

n

n

xxx

xxxT

n

n

                                       (5) 

To calculate x1 which is the corresponding residue of m1 = 2
2n

, 

since the value of x1 is in 0 ≤ x1 < m1 span and the value of T is 

in 0 ≤ T < m11× m12 span and with respect to this reality that m1 

≤ m11× m12 , therefore below equation is used.                              

    





−
=

1

1
mT

T
x    

if

if
  

12111

10

mmTm

mT

×<≤

<≤
                   (6) 

The simplification of (5) can be performed with considering the 

point that, by expressing xi in k bits, 
2 1

2
k

p

i
x

−
×  and 

2 1kix
−

−  

are equivalent to p bits circular left shifting of xi, and one’s 

complement of xi, respectively
1
. The residues can be represented  

at bit-level by: x11 = (x11,n-1,…, x11,1, x11,0) and x12 = (x12,n,…, 

x12,1, x12,0). Therefore, (5) can be rewritten as 

HxT
n211 +=                                                                   (7) 

1221 1 −++= nssH                                          (8) 

 

1

1

1 11 11, 1 11,1 11,0 11, 1 11,1 11,02 1

2 1

2 2(0 ) 1n

n

n n

n n

s x x x x x x x+

+

− −−

−

= − = − =K K
1442443 1442443

 (9) 

 

1

1

2 12 12, 12,1 12,0 12, 1 12,1 12,0 12,2 1

1 12 1

2 2( )n

n

n n n

n n

s x x x x x x x x+

+

−−

+ +−

= = =K K
1442443 144424443

 (10) 

                                              

By substituting (9) and (10) in (8), H is obtained as a (n+1)-bits 

number. For calculating T, it is sufficient to concatenate x11 to 

H.                                  

44444 344444 21
KK

n

nnn xxxHHHHT

2

0,111,111,11011 −−=                      (11)  

According to (11) equations (12) and (13) are concluded. 

12111

10

mmTm

mT

×<≤

<≤
   

if

if
    

1

0

=

=

n

n

H

H
                              

(12)

(13)
 

With respect to (12) and (6) 1x  is obtained as follow 

44444 344444 21
KK

n

nn xxxHHHx

2

0,111,111,110111 0 −−=                        (14) 

For the values greater than m1 = 2
2n

 and based on (11) and (13), 

T is equal to 

44444 344444 21
KK

n

nn xxxHHHT

2

0,111,111,110111 −−=                         (15) 

The binary representation of m1 = 2
2n

 can be shown as                

                                                        

4434421 K
n

m
2

1 000000001=                                                       (16) 

By substituting (15) and (16) in (6), x1 is obtained as 

44444 344444 21
KK

n

nn xxxHHHx

2

0,111,111,110111 0 −−=                      (17) 

Since x1 has the same value for 0 ≤ T < m1 and m1 ≤ T < m11× 

m12, the most significant bit of x1 can be ignored as shown 

below    

44444 344444 21
KK

n

nn xxxHHHx

2

0,111,111,110111 −−=                         (18) 

By calculating x1 and using residues x2 and x3, the residue to 

binary converter for the first-level moduli set {2
2n

, 2
n
 –1, 2

n
 +1} 

is designed.    

 

Residue to Binary converter for the moduli set {2
2n

, 2
n
 –1, 2

n
 

+1} based on CRT: according to (2) and by assuming m1 = 2
2n

, 

m2 = 2
n
 –1 and m3 = 2

n
 +1 we have  

)12(ˆ 2

1 −= n
m , )12(2ˆ 2

2 += nn
m , )12(2ˆ 2

3 −= nn
m  and 

)12(2 22 −= nn
M                        (19) 

Considering (19) the required multiplication reverses for (2) are 

computed as follows  

11)12( 1
2

2

1 2
−=→=−× kk

n

n
                                  (20) 

2 1

2 2
2 1

2 (2 1) 1 2
n

n n n
k k

−

−
× + = → =                                (21) 

1

3
12

2

3 21)12(2 −

+
=→=−× nnn

kk
n

                        (22) 

 

The binary vectors x1, x2 and x3 can be represented in bit-level 

as x1 = (Hn –1,…, H1, H0, x11,n –1,…, x11,1, x11,0) ,  

x2 = ( x2,n –1,…, x2,1, x2,0) and x3 = ( x3,n ,…, x3,1, x3,0). Now, (2) 

can be rewritten as 

∑∑
==

×−×=×=
n

i

imii

M

n

i
miii lMxkmxkmX

ii
11

ˆˆ   (23) 

Where: l is an integer number and depends on the value of X. 

By replacing (25)-(22) in (23) we have    

l

x

x

x

X
nn

nnn

nnn

n

×−×−



















××−×

+××+×

+×−×−

=

−

− )12(2

2)12(2

2)12(2

)1()12(

22

3

12

2

12

1

2

   (24) 

By dividing both sides of (24) by 2
2n

 we have 
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( ) lxxx
X nnnnnn

n
×−−××−+××++×+−= −−−

)12(2)12(2)12()21(
2

2

3

1

2

1

1

2

2
           (25) 

and calculating the floor values in modulo (2
2n

 –1) results in the 

following  

)12()12(
3

1

)12(
2

1

)12(1

2

2
2

22

2)12(

2)12(1

2
−−

−

−

−

−

××−+

××++×−
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n
n

nn

x

xx
X

nn

nn

n

     

 (26) 

                                

In this case, the number X can be computed by the following 

1

2

2
2

2
x

X
X

n

n
+×





=                               (27) 

Eq. (26) can be rewritten as 

)12(5251432 2

2 −
+++=





nSSSS

X
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2
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−
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n

nn xxxHHHxS
44444 344444 21

KK
 =
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n
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2
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1
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The hardware implementation of residue to binary converter for 

the two-level moduli set {2
2n

 {2
n
, 2

n+1
 –1}, 2

n
 –1, 2

n
 +1} is 

illustrated in Figure-1. The required hardware consists of n NOT 

gates in operand preparation unit 1 (opu1) which are used for 

calculating equation (9). To implement (8), a modulo (2
n+1

 –1) 

adder is required. In this paper a (n+1)-bits carry propagate 

adder (CPA) with end around carry (EAC) is used to satisfy it. 

Opu2 contains (3n+1) NOT gates to calculate equations (29) 

and (32). Equation (28) is implemented by applying two 2n-bits 

carry-save adders (CSA) with EAC and one 2n-bits CPA with 

EAC. Some of the used full adders (FA) in CSA1 and CSA2 are 

reduced with pair of XOR/AND and XNOR/OR gates, because 

equations (31) and (32) have some bits with constant values 0 or 

1. Equation (27) is computed by concatenating x1 with 
22 n

X 
 
 

without any extra hardware. 

 

Results and Discussions 

In Table-1 the performance of the proposed residue to binary 

converter for the moduli set {2
2n

 {2
n
, 2

n+1
 –1}, 2

n
 –1, 2

n
 +1} has 

been compared with converters for {2
n
 –1, 2

n
, 2

n
 +1, 2

n+1
 –1}

5
 

and {2
n
 –1, 2

n
, 2

n
 +1, 2

n+1
 –1}

7
 from both hardware cost and 

delay viewpoints. As shown in figure-1, the delay of opu1 and 

opu2 are equal to one NOT gate and CSA 1 and CSA2 have the 

delay of one full adder. In addition, the delay of CPA1 and 

CPA2 is equal to (2n+2)tFA and (4n)tFA respectively, where tFA 

denotes the delay of a full adder (FA). For a better comparison, 

the unit gate model is considered to obtain total area and delay 

estimations. Based on this model, each two-input monotonic 

gate counts as one gate in area and delay, an XOR/XNOR gate 

counts as two gates in area and delay, and an FA has area of 

seven gates and delay of four gates. The corresponding total unit 

gate area and delay are presented in table-1. According to the 

results of table-1, our proposed residue to binary converter has 

significant reduction in both delay and hardware cost in 

comparison to the converters presented for {2
n
 –1, 2

n
, 2

n
 +1, 2

n+1
 

–1}
5
 and {2

n
 –1, 2

n
, 2

n
 +1, 2

n+1
 –1}

7
 moduli sets.  
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Conclusion 

This paper presents an efficient two-level design of reverse 

converter for the new two-level moduli set {2
2n

 {2
n
, 2

n+1
 –1}, 2

n
 

–1, 2
n
 +1} based on combination of CRT and New CRT-1. 

Comparison with the similar four-moduli residue to binary 

converters show that the proposed design is faster and requires 

less hardware area.    
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Figure- 1 

The proposed residue to binary converter: (a) second-level (b) first-level 

 

Table-1 

Performance Comparison 

Converter Area Unit Gate Area Delay Unit Gate Delay 

[5]-CI 
(9n+5+k*)AFA+(2n)AXNOR 

+(2n)AOR+(6n+1)ANOT 

(129n+7n
2
)/2 

+4 
((23n+12)/2)tFA 46n 

[7] 

(10n+6+k*)AFA+(6n+2)AXNOR 

+(6n+2)AOR+(7n+2)ANOT 

+(n+3)AMUX21+(2n+1)AMUX3-1 

(193n+7n
2
)/2 

+50 
((15n+22)/2)tFA 30n 

P
ro

p
o

se
d
  

(5n+3)AFA+(n+1)AXOR 

+(n+1)AAND+(n+1)AXNOR 

+(n+1)AOR+(4n+1)ANOT 

(47n+30) (6n+4)tFA+2tNOT 24n 

      * k= (n-4)*(n+2)/2 

 


